dark mode light mode Search
Search

MIT And NASA Unveil Shape-Shifting Airplane Wing

MIT and NASA Develop Morphing Airplane Wing

NASA Ames Research Center

A team of engineers from MIT and NASA has built and tested a radically new kind of airplane wing, assembled from hundreds of tiny identical pieces. The wing can change shape to control the plane’s flight, and could provide a significant boost in aircraft production, flight, and maintenance efficiency, the researchers say.

Instead of requiring separate movable surfaces such as ailerons to control the roll and pitch of the plane, as conventional wings do, the new assembly system makes it possible to deform the whole wing, or parts of it, by incorporating a mix of stiff and flexible components in its structure. The tiny subassemblies, which are bolted together to form an open, lightweight lattice framework, are then covered with a thin layer of similar polymer material as the framework.

 MIT and NASA Develop Morphing Airplane Wing

The result is a wing that is much lighter, and thus much more energy efficient, than those with conventional designs, whether made from metal or composites, the researchers say. Because the structure, comprising thousands of tiny triangles of matchstick-like struts, is composed mostly of empty space, it forms a mechanical “metamaterial” that combines the structural stiffness of a rubber-like polymer and the extreme lightness and low density of an aerogel. Whilst it boasts the same stiffness as rubber, the resulting lattice has a density of 5.6 kilograms per cubic meter compared to rubber which has a density of about 1,500 kilograms per cubic meter.

 MIT and NASA Develop Morphing Airplane Wing

Benjamin Jenett, a graduate student in MIT’s Center for Bits and Atoms, explains that for each of the phases of a flight — takeoff and landing, cruising, maneuvering and so on — each has its own, different set of optimal wing parameters, so a conventional wing is necessarily a compromise that is not optimized for any of these, and therefore sacrifices efficiency. A wing that is constantly deformable could provide a much better approximation of the best configuration for each stage.

 MIT and NASA Develop Morphing Airplane Wing

The same system could be used to make other structures as well, Jenett says, including the wing-like blades of wind turbines, where the ability to do on-site assembly could avoid the problems of transporting ever-longer blades. Similar assemblies are being developed to build space structures, and could eventually be useful for bridges and other high-performance structures.

Sign up to our newsletters and we’ll keep you in the loop with everything good going on in the creative world.

"*" indicates required fields

Name*
This field is for validation purposes and should be left unchanged.